
HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD..
http://www.HSAV.com

Address: second floor, No.199, Longyin 2nd Road, Xixiang, Shenzhen, China
TEL: 86-0755-27951479 27950879 FAX: 86-0755-27950879-213
Technology support：support@HSAV.com Business contact：Sales@HSAV.com

OTG15X Series I2C Software User Manual V2.3

� General Rules

OTG15X generally means processor used in OTG15 series modules, user mainframe generally means MCU
developed by user and communicates with OTG15X through I2C bus.

If 16-bit parameter is composed of two bytes, the first byte is low bit and the second byte is high bit.
If 32-bit parameter is composed of four bytes, the first byte is low bit and the fourth byte is high bit.
0xnn means the described value is uncertain, it may be any values, but its value is within range fixed

originally, for instance, instruction length is 2 to 137.
B7 means the seventh bit of byte, B6 means the sixth bit of byte, and the rest may be deduced by analogy.
I2C address that user mainframe writes OTG15X is 0x5e, i.e. 01011110B. I2C address that user mainframe

reads OTG15X is 0x5f, i.e. 01011111B.
The length of register is 8 bits in general, and user mainframe only needs one byte for read and write.

Another registers that mark byte length need several bytes for read and write, should do multibyte read and write
according to need.

In addition to I2C’s SCL and SDA ports, OTG15X provides a INT output port extra, which is used to inform
of user mainframe after OTG15X’s internal state changes.

INT is high level under normal work, it is raised by pull-up resistor in OTG15X, and can be lowered by
external circuit, but cannot be raised by external circuit, and interface is the same as the interface of 8051 single
chip.

When applicable interrupt appears in OTG15X, OTG15X lowers INT. OTG15X will raise INT after user
mainframe eliminates corresponding interrupt state.

User mainframe can detect INT with low level at any time, and read INTRD register after detecting INT
with low level. INTRD is 16-bit register, and each bit means a kind of interrupt, there are 16 kinds of interrupts in
all from INT0 to INT15. Every interrupt can be set or cleared by INTEN register. It is able to set corresponding
interrupt number to clear generated interrupt after reading interrupt.

Interrupt mechanism just provides a fast processing mode, and user mainframe can read corresponding
register according to interrupt number, which can improve the using time of I2C bus very much.

There is the register of “INTx” behind read-only or read-write register, it’s better to read register after user
mainframe reads corresponding interrupt in order to get most timely information; if read register without
generating interrupt, generally read information not updated last time.

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 2 of 12

� OTG15X System Setup Register

Address Name Description

0x00 INTCLR

Clear interrupt register (write only)
Interrupt number instruction:

16-bit interrupt number is consist of byte 0 and byte 1, B0 of byte 0 is
INT0, B7 of byte 1 is INT15, and the rest may be deduced by analogy.
INT0=1, OTG15X initialization.
INT1=1, USB/CF card interface plug-pull interrupt, need to read “DISKSTA”
register.
INT2=1, file structure scan is finished in USB/CF, it is okay to read related

information.
INT3=1, file information finishes, it is okay to read “FILEINFO” register,

filename, or ID3.
INT4=1, playing time change.
INT5=1, stop playing songs.
INT6=1, cannot find appointed file.
INT7=1, cannot play files.
INT8=1, stop recoding.
INT9=1, U disk/CF card’s available space is full/write protection.
INT10=0, reserved.
INT11=1, mark finishing character library read, it is okay to read related
information.
INT12=1, real time clock change.
INT13=0, reserved.
INT14=1, OTG15X, computer, and network communication receive interrupt.
INT15=1, additional function interrupt.

0x01 INTRD

Read interrupt register (read only)
Interrupt number and clear interrupt register are the same.
Attention: please clear corresponding register number after read, or
interrupt will go on without stop. Clear corresponding interrupt through
writing 1.

0x02 INTENA

Interrupt enable register (write only)
Set corresponding interrupt enable, OTG15X will generate corresponding

interrupt and lowers INT pin when state changes, user mainframe need to check
INT pin, read interrupt value and do corresponding processing.
 Interrupt number and read/write interrupt register are corresponding, enable
corresponding interrupt when corresponding bit is 1, and disable corresponding
interrupt when corresponding bit is 0.

0x03 DISKSTA

Interface state register (read only/INT1)
B0=1, USB interface has plug or pull action.
B5=1, CF card has plug or pull action.
B6=1, USB device and PC have plug or pull action.
B7=1 is interface plug type, B7=0 is interface pull type.

0x09 APPSTA
Additional function register (read only/INT15)
B0=1, OTG15X temperature change.
B1 to B7 are reserved, and value is 0.

0x0c SETRTC System real time clock setup (write only)
Byte 0 to byte 6 is respectively second/minute/hour/week/day/month/year.

0x0d READRTC System real time clock read (write only/INT12)
Byte 0 to byte 6 is respectively second/minute/hour/week/day/month/year.

0x0f SYSVER

System version read (read only)
Byte 0 to byte 3 is respectively hour/day/month/year, i.e. the date of system

date.
Byte 4 is OTG15X module hardware code: =0x15is OTG15E, =0x16 is

OTG15F, and =0x18 is OTG15H

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 3 of 12

� OTG15X Play/Record Register

Address Name Description

0x10 DISKSEL

Drive letter selection register (write only)
 =0x00, use USB interface.

=0x05, use CF card interface.
Attention: this register is effective for all operation, it is necessary to

select it in advance.

0x12 PLAYMODE

Play, pause, stop, record, stop recording mode selection (write only)
 =0x00, stop mode.
 =0x01, playing mode.
 =0x02, pause mode.
 =0x03, recording mode.

=0x04, recording pauses.
=0x05, stop recording.

0x14 SPECPLAY

Select songs to play. (write only)
 (note: arrange the sequence of directory and songs according to date
that creates directory and songs)

Byte 0 to byte 1 is song number.
Byte 2 to byte 3 is directory number.

0x16 AUDMODE

Sound and channel mode selection (write only)
 =0x00, mute when stop mode.
 =0x01, select ADC sound when stop mode.
 =0x02, select internal FLASH when stop mode.
 =0xff, mute.

0x18 RECMODE
Record format setup (write only)

For byte 0 to bye 3, please refer to appendix “Record format setup”.

0x1a PLAYLIST

List play (read/write)
I2C transmits list station number that user selects in Playlist.txt file under
CF card directory; register records list number that user select to play (note:
Playlist.txt file content should be written according to prescribed format,
and list play file is placed in AUDIO folder). List format is as follows:
[1]
station NO 1= 1 // Station quantity.
list NO 1=2 // The quantity of speech list.
playfile 1= 0001.mp3+000a.mp3 // Current station song name that is
consist of 4 letters or digits.

0x1b NEWFOLDER

New folder register (write only)
Directly send folder name to create a new folder. Filename supports 8 bytes
at most.

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 4 of 12

� OTG15X File Information Register

Address Name Description

0x20 NEWFILE

New folder register (write only)
 Create a new file in U disk.

=0x00, new file, default filename is NEW_XX.15X, and XX is from 01
to 99.

=0x01, close and save new file.

0x21 TRACKTOL Songs quantity in U disk (read only/INT3)

0x22 COPYFILE Copyfile register (write only)

0x23 DIRTOL Directories quantity in U disk (read only/INT3)

0x24 DELFILE
Register deleting file (write only)
 Delete appointed file, 16-bit register, high 8 bits is directory number, and
low 8 bits is filename.

0x25 DIRTRACK Songs quantity under current directory (read only)

0x27 PLAYTIME Play time (read only/INT4)
Note: time playing songs.

0x29 FILEINFO

File information that is playing (read only/INT4)
Byte 0 to byte 1 is song number.
Byte 2 to byte 3 is directory number.
Byte 4 to byte 5 is total time playing songs.
Byte 6 is song type.
Byte 7 is song code stream rate.
Byte 8 is song sampling rate.

Divide total time playing song by 60, if you get integer, it is minute, and the
rest is second.
Byte 6 file type=0x01, it is MP3 file; =0x02, it is WMA file.
For byte 7 code stream rate, if file type is MP3, multiplying 8 by the value of
byte 7 is the code stream rate of song; if file type is WMA, the value of byte 7
is the same as code stream rate.
Byte 8 sampling rate=0x08, it is 8K; =0x0b, it is 11.025KHz; =0x0c, it is
12K; =0x10, it is 16K; =0x16, it is 22.05KHz; =0x18, it is 24K; =0x20, it is
32K; =0x2c, it is 44.1KHz; =0x30, it is 48K.

0x2b FILENAME Song filename internal code, it is double-byte character string and ends in
0x0000 (read only/INT4)

0x2d ID3NAME Song ID3 internal code, it is double-byte character string and ends in 0x0000
(read only/INT4)

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 5 of 12

� OTG15X File Edit Register

Address Name Description

0x30 FONTTYPE

Character font format selection (write only)
Byte 0 to byte 1 is limiting character font buffer byte length, and 0x0000
means there is no limit.
Byte 2 is character font format selection. For more information, please
refer to appendix 2 “Character font format instructions”.
Byte 3 is character font internal code selection, 0 is GBK, and 1 is
UNICODE.
Byte 4 is font selection, 0 is AUTO, 1 is simplified Chinese, and 2 is
traditional Chinese.

Write when register received INTRD-> system abnormity-> OTG15X
initialization.

0x31 FONTLENG
Effective character font total byte length (read only/INT11)

Byte 0 to byte 1 is effective character font total length, may read after
“GETFONT” induces INTRW to produce interrupt.

0x32 GETFONT

Get appointed character string’ character font (write only)
Byte 0 is the path selection of input character string.

When byte 0 is 0xff:
Appoint offset position from FONTBUFF character font that has been

gotten.
Byte 1to byte 2 is offset position.

When byte 0 is 0xfe:
Byte 1 is the length of input internal code character string.
Byte 2 to byte n is input internal code character string, and user

mainframe can input any characters.
When byte 0 is 0xfc:

Use current song filename internal code as input internal code character
string.
When byte 0 is 0xfb:

Use current song ID3 internal as input internal code character string.
When byte 0 is less than 0x80, the same as “interface selection register
directory number”:

Byte 1 to byte 2 is song number.
Byte 3 to byte 4 is directory number.

Attention: at this moment, it is possible to induce INTRW to generate interrupt,
and user mainframe must wait for “character font read finish mark” and then
read “FONTBUFF register”.

0x33 FONTBUFF
Character font buffer (read only/INT11)

Byte 0 to byte n-1 is character font data.
Byte n is check sum, and its value is the sum adding byte 0 to byte n-1.

0x36 T9INPUT Chinese input method register (write only)

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 6 of 12

Appendix 1:
1 Record Format Setup

Byte 0 is to appoint recording format, default is MP3 format 128Kbps/44.1KHz/Stereo.
Byte 1 is to appoint recording stop mode, 0 means that stop when recording length is over, and 1 means that

filename number and 1 and continue recording after recording length is over.
Byte 2 to byte 3 is to appoint the length of recording file, unit is MB, 0x0000 is default 50MB, and 0x0001 is

1MB.

Use MP3 compression recording format and extension is *. MP3.
0x00: 320kbps/44.1kHz/Stereo
0x01: 320kbps/48kHz/Stereo
0x02: 256kbps/44.1kHz/Stereo
0x03: 256kbps/48kHz/Stereo
0x04: 192kbps/44.1kHz/Stereo
0x05: 192kbps/48kHz/Stereo
0x06: 192kbps/32kHz/Stereo
0x07: 160kbps/44.1kHz/Stereo
0x08: 160kbps/48kHz/Stereo
0x09: 160kbps/32kHz/Stereo
0x0a: 128kbps/44.1kHz/Stereo
0x0b: 128kbps/32kHz/Stereo
0x0c: 96kbps/44.1kHz/Dual channel
0x0d: 96kbps/32kHz/Dual channel
0x0e:96kbps/44.1kHz/Single channel
0x0f: 96kbps/48kHz/Single channel
0x10: 64kbps/44.1kHz/Single channel
0x11: 48kbps/44.1kHz/Single channel
0x12: 48kbps/32kHz/Single channel

0x13: 64kbps/22.05kHz/Dual channel
0x14: 64kbps/24kHz/Dual channel
0x15: 48kbps/22.05kHz/Dual channel
0x16: 48kbps/16kHz/Dual channel
0x17: 32kbps/16kHz/Dual channel
0x18: 24kbps/11.025kHz/Dual channel
0x19: 48kbps/22.05kHz/Single channel
0x1a: 48kbps/24kHz/Single channel
0x1b: 32kbps/22.05kHz/Single channel
0x1c: 32kbps/24kHz/Single channel
0x1d: 24kbps/16kHz/Single channel
0x1e: 16kbps/16kHz/Single channel
0x1f: 16kbps/11.025kHz/Single channel
0x20: VBR 256kbps/44.1kHz/Stereo/VBR
0x21: VBR 192kbps/44.1kHz/Stereo/VBR
0x22: VBR 192kbps/48kHz/Stereo/VBR
0x23: VBR 160kbps/44.1kHz/Stereo/VBR
0x24: VBR 160kbps/32kHz/Stereo/VBR
0x25: VBR 128kbps/44.1kHz/Stereo/VBR
0x26: VBR 96kbps/44.1kHz/Dual channel/VBR

Use WAVE nonloss compression recording format and extension is *.WAV.
0x30: 44.1kHz/Stereo
0x32: 22.05kHz/Stereo
0x34: 11.025kHz/Stereo

0x31: 44.1kHz/Stereo
0x33: 22.05kHz/Stereo
0x35: 11.025kHz/Stereo

Attention:

1) The larger the length of recording file, the longer time that recording initialization needs.
2) 1MB = 1,048,576 bytes.
3) If recording format is 128Kbps/44.1KHz/Stereo, it is able to record for one hour (bit rate/8 is byte quantity

that this bit rate records for one second, and unit is KB).
4) Dual-channel is two irrelevant channels.
5) VBR is variable bit rate recording format.
6) Default is 128kbps/44.1kHz/Stereo。
7) There is need to appoint corresponding code stream and sampling rate before recording, or record according

to default.

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 7 of 12

Appendix 2:
2 Character Font Format Instruction and Usage

OTG15X supports any character font arrangement mode.

Appendix 3:
3 OTG15X Read and Write Register

OTG15X write register diagram：

Start Device address
(write) Register

address
Write data

0
Write data X (when

multibyte) End

OTG15X read register diagram：

Start Device address
(write) Register address waiting

for being read End

 Start Device address
(read) Read data 0 Read data X (when

multibyte) End

First use the device address of write to write register address waiting for being read, and then use the device

address of read to read corresponding data.
Need to receive the ninth ACK bit when write each byte including data and address for I2C, ACK bit is 0

outputted by OTG15X. User mainframe can know if OTG15X is working normally according to ACK.
Need to send the ninth ACK bit when read each byte for I2C, ACK bit is 0 outputted by user mainframe, but

the last byte needs to send the ninth NAK bit, NAK bit is 1 outputted by user mainframe.

Appendix 4:
4 Source Code Instructions that OTG15X Uses IO Port to Simulate I2C Time Order

void main(){
 BYTE gLocal_1;
 // Another initialization;
 // I2C bus and INT initialization
 while (1){
 if (pMED_INT){
 gLocal_1 = MMED_ReadByte(cADD_INTRD); // read OTG15X interrupt
 if (gLocal_1 & 0x01){ // B0 system is not normal

MMED_WriteByte(cADD_INTCLR, 0x01); // clear corresponding interrupt
// another processing

}
else if (gLocal_1 & 0x02){ // B1 and another processing

// another corresponding processing
}

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 8 of 12

}
// another processing

}
}

// the following functions can be used in all I2C bus
void MMED_WriteByte(BYTE gLocal_1, BYTE gLocal_2){ // write single-byte register
 MMEDStart(); // I2C start
 MMEDWrite(0x32); // write device address write
address

MMEDWrite(gLocal_1); // write register address
 MMEDWrite(gLocal_2); // write register value
 MMEDStop(); // I2C stop
 return;
}

BYTE MMED_Read_BYTE(BYTE gLocal_1){ // read 8-bit register
 MMEDStart(); // I2C start
 MMEDWrite(0x5e); // write device address write
address

MMEDWrite(gLocal_1); // write register address
 MMEDStop(); // this moment OTG15X prepares for corresponding date used
to read

 MMEDStart(); // I2C start
 MMEDWrite(0x5e+1); // write device address write
address
 gLocal_1 = MMEDRead(1); // read register ACK bit, stop reading if NAK is 1
 MMEDStop(); // I2C stop
 return gLocal_1; // respond register value
}

BOOL MMEDWrite(BYTE gLocal_1){ // I2C writes byte，gLocal is data waiting for being
writen
 BOOL FLocal_1; // return ACK/NAK marks
 BYTE gLocal_2; // bit counter

 gLocal_2 = 8; // 8 bits, high bit first outputs
 do {
 pMED_SCL(0); // lower I2C clock wire so as to change data
 if (gLocal_1 & 0x80){ // if data bit is 1
 pMED_SDA(1); //raise I2C data wire
 }
 else { // if data bit is 0
 pMED_SDA(0); // lower I2C data wire
 }

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 9 of 12

 MUSDELAY(5); // delay 5ms
 gLocal_1 <<= 1; // prepare for next data
 pMED_SCL(1); // raise I2C clock wire so as to keep data stable
 MUSDELAY(5); // delay 5ms
 } while (--gLocal_2 != 0); // finish 8 bits data

 pMED_SCL(0); // lower I2C clock wire, and prepare for ACK bit
 pMED_SDA(1); // raise I2C data wire, ACK bit is 1
 MUSDELAY(5); // delay 5ms
 pMED_SCL(1); // raise I2C clock wire
 MUSDELAY(5); // delay 5ms
 FLocal_1 = 0; // NCK mark means failure
 if (!pMED_SDA_HIGH){
 FLocal_1 = 1; // ACK mark means success
 }
 pMED_SCL(0);
 return FLocal_1; // return ACK/NAK marks
}

void MMEDStart(){ // I2C start
 pMED_SDA(1); // raise data wire, data wire is idle
 pMED_SCL(1); // raise clock wire, clock wire is idle
 MUSDELAY(5); // delay 5ms, keep state stable
 pMED_SDA(0); // for data wire, high level switches to low level when clock is high level,
which means start
 MUSDELAY(5); // delay 5ms
 pMED_SCL(0); // lower clock wire, ready to receive or send data
 return;
}

BYTE MMEDRead(BOOL FLocal_NAK){ // I2C read
 BYTE gLocal_1; // data temporary memory
 BYTE gLocal_2; // bit counter

 pMED_SDA(1); // SDA is ready to input
 MUSDELAY(5); // delay 5ms
 gLocal_2 = 8; // 8 bits
 do{
 pMED_SCL(1); // raise I2C clock wire, data is effective when clock wire is high
level
 gLocal_1 <<= 1; // if data wire is high level, data temporary
memory is 1
 if (pMED_SDA_HIGH) gLocal_1 |= 0x01;
 MUSDELAY(5); // delay 5ms, keep state stable

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 10 of 12

 pMED_SCL(0); // lower I2C clock wire, receive next bit
 MUSDELAY(5); // delay 5ms, keep state stable
 } while (--gLocal_2 != 0); // repeat 8 times, finish receiving one byte

 if (!FLocal_NAK){ // if ACK mark is 0
 pMED_SDA(0); // lower data wire, continue read if ACK is 0
 }
 else { // if ACK mark is 1
 pMED_SDA(1); // raise data wire, read is over if ACK is 1
 }
 MUSDELAY(5); // delay 5ms
 pMED_SCL(1); // send ACK/NAK bit
 MUSDELAY(5); // delay 5ms
 pMED_SCL(0); // lower I2C clock wire
 return gLocal_1; //return received data
}

void MMEDStop(){ // I2C stop
 pMED_SDA(0); //lower data wire, ready to stop
 MUSDELAY(5); // delay 6ms, keep state stable
 pMED_SCL(1); // raise clock wire
 MUSDELAY(5); // delay 6ms, keep state stable
 pMED_SDA(1); // for data wire, low level switches to high level when clock is high
level, which means end
 return;
}
void MUSDELAY(BYTE gLocal_1){
 // delay according to user mainframe’ status
 return;
}

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 11 of 12

Appendix 5:
5 Principles That HSAV uses C Language to Compile Source Code

1、Naming principle
Naming of all variable, constant and function is composed of three portions.
For example, FAUD_Mute is divided to three parts, namely: F, AUD, and _Mute.
The first portion is composed of one letter or one letter and one number, which mean the type of the

definition.

Content Meaning
Capital ‘M’ Means function.
Capital ‘F’ Means indexed variable, 1-bit variable.
Lower case ‘g’ Means 8-bit variable.
Lower case ‘g2’ Means 16-bit variable.
Lower case ‘g4’ Means 32-bit variable.
Lower case ‘g8’ Means 64-bit variable.
Lower case ‘c’ Means constant.
Lower case ‘p’ Means IO port.

The second part is composed of three to four English capital letters that mean the document the naming

belongs to. For example, if variable is used in H06_AUD.C, the second part is AUD. Documents used usually are
as follows,

Content Meaning

AUD Universal audio processing file
VOL Multi-channel volume processing file
SUR Multi-channel with surround sound processing file

SUB The function of main file is being expanded. There is no need too many
functions in the main file to prevent deteriorating effect.

DOS Operating system processing file with USB mainframe or hard disk
interface.

MED Processing files with multimedia audio playing such as mp3.

The third part is concrete content that has one word or several words generally. The first letter of each word

is capital and underline can be added between each word. As the capital letters separate each word, there is no
need to add underline. The principle is that if it doesn’t look good or the word is abbreviated (It’s usually
capitalized) underline can be used.

 2、Principles of global and local variables

Content Meaning (compatible with VC++) C language standard
1-bit indexed variable EXTR BOOL FAUD_Mute Nonexistence
8-bit non-mark variable EXTR BYTE gAUO_Volume Unsigned char
16-bit non-mark variable EXTR WORD g2AUO_EQ_Mode Unsigned int
32-bit non-mark variable EXTR DWORD g4AUO_Mute_Timer Unsigned long
Pointer variable EXTR BYTE *gpAUD_Pointer Unsigned char
Local variable EXTR BYTE gLocal_1 Unsigned char

OTG15X Series I2C Software hsavd106.pdf Dec. 21, 2009

©© 22000022--22000099 HHaarrdd && SSoofftt TTeecchhnnoollooggyy CCoo..,, LLTTDD.. http://www.HSAV.com Page 12 of 12

Local variable absolutely forbids using 1 or several letters, e.g., when ‘X’ is the variable, it is difficult to

copy and point out how many bits there are. All writing should be named for the first time and copying is
necessary in the process of application, rewriting the same name is not suggested.

As for indexed local variable BOOL FLocal_1 and 8-bit local variable BYTE gLocal_1 etc, the first part of

local variable and global variable are the same, the second part uses ‘Local_’ character string to mean local
variable, and the third part is composed of numbers from 1 to 9 and lower case letters from “a” to “z.”

